Contents

02 Philosophy and Summary

04 International Activities

06 Research Activities

Genomic Behavioral Neuroscience Group

06 Genetic and environmental mechanisms for development and maintenance of the central nervous system
Noriko Osumi (Developmental Neuroscience)
Director of Global COE, Professor at Tohoku University Graduate School of Medicine

08 Molecular and cellular basis for the sexual dimorphism in the brain and behavior
Daisuke Yamamoto (Behavioral Genetics)
Genomic Behavioral Neuroscience Group Leader, Professor at Tohoku University Graduate School of Life Sciences

10 Molecular and physical basis of pattern formation
Toshihiko Ogura (Molecular Biology)
Professor at Tohoku University Institute of Development, Aging and Cancer

12 Understanding the mechanisms of vertebrate brain plan
Harukazu Nakamura (Developmental Neurobiology)
Professor at Tohoku University Graduate School of Life Sciences

14 Membrane traffic and brain function
Mitsunori Fukuda (Cell Biology)
Professor at Tohoku University Graduate School of Life Sciences

Embodied Cognitive Neuroscience Group

16 Elucidation of functional architecture of the brain
Tosho Iijima (Systems Neuroscience)
Deputy Director of Global COE, Vice-President of Tohoku University (Life Sciences and Research ethics), Dean of Tohoku University Graduate School of Life Sciences, Counselor of Tohoku University, Professor at Tohoku University Graduate School of Life Sciences

18 Neural mechanisms underlying problem solving
Hajime Mushiake (Neurophysiology)
Embodied Cognitive Neuroscience Group Leader, Professor at Tohoku University Graduate School of Medicine

20 From neuron to network - Shedding light in the black box
Hiromu Yawo (Neuron Network)
Professor at Tohoku University Graduate School of Life Sciences

22 Intelligence emerged through the interaction between brain, body and environment - Synthetic approach with building robotic agents -
Akio Ishiguro (System Engineering)
Professor at Tohoku University Graduate School of Engineering

24 Neural basis of higher cognitive function
Ken-Ichiro Tsutsui (Cognitive/Behavioral Neuroscience)
Associate Professor at Tohoku University Graduate School of Life Sciences

Interdisciplinary Brain Science Group

26 Behavioral neurology and cognitive neuroscience
Etsuro Mori (Behavioral Neurology and Cognitive Neuroscience)
Interdisciplinary Brain Science Group Leader, Professor at Tohoku University Graduate School of Medicine

28 Molecular neurobiology of mental disorders
Ichiro Sora (Biological Psychiatry)
Professor at Tohoku University Graduate School of Medicine

30 Research on stress and brain-gut interactions
Shin Fukudo (Psychosomatic Medicine)
Professor at Tohoku University Graduate School of Medicine

32 Development of restorative therapy in Neuromuscular disorders
Masashi Aoki (Neurology)
Lecturer at Tohoku University Graduate School of Medicine

34 Hasekura Fellowship
The Tohoku Neuroscience Global COE program is creating three fields in the Basic & Translational Research Center for Global Brain Science.

The Tohoku Neuroscience Global COE is divided into three groups: Genomic Behavioral Neuroscience, which studies the genetic basis of individual behavior; Embodied Cognitive Neuroscience, which focuses on cognitive function arising from the mutual operation of brain and body; and interdisciplinary Neuroscience, which integrates a range of research from the environment surrounding people to relationships among them. The center’s 14 professors are divided among these three groups.

Tohoku University, with its long and distinguished history in neuroscience, the Graduate School of Medicine and the Institute of Development, Aging and Cancer have made the university a highly respected institution, especially in molecular, developmental and cognitive neuroscience.

"We established the Global COE because we believe there is a strong need for neuroscience in today’s society," Dr. Osumi said. Neuroscience can be applied to a variety of areas, including medicine, education, social welfare and engineering. The field has strong links to the pharmaceutical industry, and in other businesses brain science findings are used in product design and market research. The research can also be used to better understand human economic behavior, leading to better and safer products and services.

Another reason behind the COE program is that universities all over Japan are under increasing pressure to justify their research and teaching programs. "The COE organization is based on the awareness that the number of children in Japan is declining," Dr. Osumi noted. "So we have to build up our reputation, and be open to recruiting foreign students to come here."

"Also, funding from the government for national universities is being reduced. Universities now have to compete among themselves to get grants, and the COE program is one way to do this."

Reaching out

All this makes it even more imperative to train scientists to communicate effectively, and the Tohoku Neuroscience Global COE places great emphasis on international activities and community outreach. To this end, the center funds several fellowships and forums to help young scientists to gain international experience.

One, the Hasselblad fellowship, is named after Tsunenaga Hasselblad, the first Japanese diplomat to make the long and dangerous journey from Japan to Rome in the 17th century to meet with the Pope. Thanks to this fellowship, the COE sends students and post-docs to attend international conferences, as well as accepting researchers from overseas.

The Wakate Forum is aimed at exposing young researchers to other fields of science through seminars that the students set up themselves. They organize the seminars, select the speakers, and invite them to come. Logistics is handled by the administrative office, but the planning and initial contacting of the invitees are done by the students. They also have seminars to present their own data to each other.

The COE is also active in career support, inviting people outside of academia, who have trained to a high level, for example patent lawyers, pharmaceutical company executives, entrepreneurs and venture capitalists. Meeting such people can be very important to the students. In Japan, although many students graduate with PhDs every year, very few career posts in academia open up, and traditionally grad schools have trained students only for academic careers.

"There has been no system to encourage students to go out into the wider world, and the teachers don’t really know how to educate people who are not going into academia," Dr. Osumi noted. "So we invite many people working in various careers, and show the students that they can apply their training to benefit society in other fields."
International Activities

Tohoku University’s Neuroscience Global COE places a high priority on international activities. In this day and age, international collaboration and cooperation are crucial for doing effective, cutting-edge science. The various conferences and symposiums also promote scientific progress by encouraging the free flow of information and ideas.

Some students got such an experience in October 2008, when the Tohoku Neuroscience COE held a joint forum with Fudan University in Shanghai. More than 100 people attended, most of them from Fudan U., and about 35 from Tohoku U. – 22 young scientists and the rest professors. The students were asked to submit a 1,500 word article for the proceedings journal, and while in China they each did a 15-minute talk and presented their posters.

"For many of the students, the poster session was their first English oral presentation. They were a little nervous, but it was really a good situation for them, though it was also quite difficult," Dr. Osumi said.

The forum was the latest event in a long history of contacts between Tohoku University and China. The renowned Chinese novelist Lu Xun studied at Tohoku U.’s medical school in 1904, and lived in Shanghai for many years. One of his professors at Tohoku University even appeared in one of his novels. "That’s one reason we held the joint forum with Fudan University," Dr. Osumi said. "The other reason, of course, is that Fudan U. has an excellent brain science institute."

The previous year, the COE held an international symposium conference at the Zao mountain ski resort area near Sendai. Eighty attendees came from seven countries. The event was organized by Prof. Daisuke Yamamoto of the Genome Behavioral Neuroscience group under the title, "From Genes to Development and Behavior."

Most of the people attending were related to molecular and behavioral neuroscience.

"It was very good, because it was held at an onsen hot-spring resort, which provided a nice atmosphere, and everyone stayed at the same traditional ryokan hotel, and we were able to discuss our work until very late at night," Dr. Osumi recalled.

Attendees heard 50 poster sessions by Tohoku University students and seven lecturers invited from around the world. "It was an excellent chance for our students and post-docs to talk frankly and deeply about their research with some of the top people in the field, famous scientists that they had only known by name. It was a very precious time for them," Dr. Osumi said.

Also in 2008, the center held a retreat at the beautiful town of Matsushima near Sendai, jointly with the RIKEN research institute. RIKEN BSI has held a summer school for the last 10 years, which is quite well known among brain neuroscience department lately has also been making a name for itself."

There are more international activities in the pipeline. The next international conference will be in Taiwan, a joint seminar with a Taiwanese research institute, and a summer retreat will also be held again this year.

"We are planning more international symposiums and conferences, including some outside Japan. We are always encouraging students to go abroad," Dr. Osumi said.

The organizers of the Neuroscience Global COE realize that English is the language of international science, and anyone wanting to be a serious scientist has to be not only fluent in spoken and written English, but also experienced in giving effective presentations at international conferences.

"To do science we need to communicate," Dr. Osumi noted. "But our university system isn’t really set up to teach advanced communication skills. Of course, we have English teachers, who teach literature and basic conversation, but it usually does not go beyond that." To provide experience in English communication, many of the symposiums, seminars and poster sessions at the COE are given in English, and students have to give many of their presentations in English as well.

"I think this is a valuable exercise," Dr. Osumi said. "It can be a little hard for the students to do the presentations in addition to their own research projects, but this kind of on-the-job training in presentation and organizing will be helpful in their future careers."

Tohoku Neuroscience Global COE

Basic & Translational Research Center for Global Brain Science
Genetic and environmental mechanisms for development and maintenance of the central nervous system

In order to achieve various higher functions of the brain, several developmental processes have to be accomplished. For example, various kinds of neurons have to be generated and distributed in accurate numbers and in precise positions, and proper neural circuits have to be established among an enormous number of neurons. In addition to these neurons, a huge number of glial cells (astrocytes, oligodendrocytes, and microglia) are also located within the entire central nervous system (CNS), where the astrocytes interact with blood vessels to intake oxygen and nutrients and to transfer them to the neurons, oligodendrocytes myelinate neuronal axons thereby increasing speed of neuronal transmission, and microglia work in healing inflammation and wound. Most of the processes in the brain formation during embryonic periods are governed by genetic programs, yet further refinement and maintenance of the CNS continue postnatally. During the initial process of CNS formation when the neural tube is just closed, the region called the neural crest is established at the interface between the neural epithelium and surface ectoderm. Neural crest-derived cells differentiate multiply to make not only neurons and glia in the peripheral nervous system (PNS), but also bone, cartilage, smooth muscle and pericytes of the blood vessels in the craniofacial region. Our lab is thus working to better understand mechanisms for development of the CNS and PNS at molecular and cellular levels. Particularly, we are interested in initial brain regionalization, embryonic and adult neurogenesis (i.e., proliferation and differentiation of neural stem cells), and mechanisms for establishment and differentiation of the neural crest. Our recent curiosity in neurogenesis further includes relationship between states of neurogenesis and mental diseases because the neurogenesis is important not only in brain formation but possibly in homeostasis of brain functions. Above studies require various experimental systems, which we are actively developing. For example, we have established a unique system to transfer certain genes directly into the developing brain primordium by combining mammalian whole embryo culture and electroporation. This technique is very quick and easy compared with one using virus vectors, and has advantage in precisely transferring genes into certain regions of the brain primordium. For manipulating embryos at later stages, we perform in utero operation together with electroporation. Time-lapse imaging techniques are also refined to observe embryonic neural stem cells in conditions better mimicking in vivo situation. Behavior analyses of rodent models have been done in regards with neurogenesis within the brain development and aging and mental diseases. Various kinds of environmental factors influence on development and maintenance of the brain. We are particularly focusing on nutrients, and analyzing effects of polyunsaturated fatty acids (e.g., DHA and arachidonic acid) on neurogenesis in animal models and cultured cells. Since exercise promotes neurogenesis in rodents possibly via enhancing blood flow, we are trying to increase neurogenesis with treating mice with antihypertensive drugs. These studies may contribute therapeutic development for prevention and treatment of mental diseases such as depression and schizophrenia that may relate with impaired neurogenesis.

Articles

Molecular and cellular basis for the sexual dimorphism in the brain and behavior

Why females and males behave differently is a fundamental question for us. Biologists postulate that the sexual dimorphism in the brain underlies such gender differences in behavior, yet little evidence has been obtained. Drosophila offers a handy system for genetic dissection of complex behaviors. One of the most salient examples of sexually dimorphic behaviors in Drosophila is courtship behavior. When a male fly encounters a female, he immediately initiates courtship in most cases, whereas the male-fly encounters provoke aggression under certain conditions. The male fly could also commence courting another male but he stops courting soon after, often switching to aggression. Such a choice between behavioral repertoires correlated with the differences in the social context must result in a switching of motor centers to be activated, and this decision-making is likely controlled by an executive neural center that is situated on a higher rung of the neural hierarchy. To explore the neural basis for decision-making, we have to identify these neural centers individually in the brain.

We will use the MARCM (Mosaic Analysis with Repressive Cell Markers) method to label a few clonal cells in the brain, to manipulate them, or to record their activity. In MARCM, the Ga4 action is repressed by the presence of Ga10 in most cells in the body, except for some clonal cells in which the Ga10-coding transgene has been recombined out during development. The cells derived from these Ga10-free clones alone express Ga4 in the animal. Ga4 is then used to drive expression of reporters, activators or inactivators of neurons. In the proposed research, we use MARCM to study physiology and anatomy of a subset of fruitless-expressing cells that potentially contribute to sexual dimorphisms of behavior.

The fruitless gene was originally identified by its remarkable phenotype of its mutants: mutant males court both males and females, yet without copulating. In some of other strains that are also mutant for the fruitless gene, males court males but not females. Therefore, the fruitless gene seems to function as a critical switch in behavioral choice in the sexual context. In fact, the fruitless gene is proposed to be a master control gene in organizing the brain centers for sexual behavior, for its ability to cause an "inversion" of the gender role, when male-specific forms of its transcripts are expressed in females by replacing the genomic fruitless gene with an engineered one.

We will identify uniquely the fruitless-expressing neurons by labeling individually their entire structures including dendrites and axons in addition to the cell bodies by means of the MARCM method. Based on the projection and dendritic branching patterns of fruitless-expressing neurons revealed by single cell labeling with this method, we should be able to distinguish groups of neurons that are functionally distinct. The neuronal clusters we define here are presumably not just the cell groups of which somata are located close proximity to each other, but represent functional units, as the members of a group share projection patterns and dendritic fields. If this is the case, we may be able to assign a specific function to each neuronal cluster. For instance, a particular cluster of fruitless-expressing neurons could play an executive role in initiating male-typical courtship behavior. We will generate small clonal patches of neurons that are masculinized in otherwise female individuals, on the assumption that a fraction of such females displays male-like courtship as a result of sexual transformation of a cell cluster that functions as the neural center to trigger the male-type sexual behavior.

This rather straightforward approach using Drosophila genetics will allow us to identify execute neurons governing behavioral choices in the sexual context.

Do such executive neurons for sex-specific behavior exist in humans, as well? This remains to be answered.
Profile

Prof. Ogura has graduated Tohoku University School of Medicine, been conferred PhD degree (Immunology) from Kyoto University, and now is a professor of Institute of Development, Aging and Cancer, Tohoku University since 2003. His research covers broad areas of developmental biology, from cardiogenesis to neurogenesis. His lab is now focusing on re-interpretation of morphogenetic movement with different viewpoints, such as mathematics and dynamics, since Prof. Ogura and his colleagues have found that physical forces are an essential parameter of morphogenesis, homeostasis and metabolism. Prof. Ogura’s lab is now trying to open a new field that has never been explored. Prof. Ogura is a faculty member of Faculty of 1000 (Neurodevelopment section).

Molecular and physical basis of pattern formation

Orchestration of differentiation, migration and re-assembly of cells is one of the most fundamental aspects of pattern formation of tissues and organs, including central nervous system. We thought that these coordinated behaviors of cells are regulated by a genetic program, in which pivotal genes regulate these steps in a tight and precise manner. This also implies that careful dissection of this genetic program and detailed analyses of functions of genes should help us to understand complicated morphogenesis of tissues and organs. Nonetheless, we have just come to a point to re-evaluate our approaches and to proceed to a new field, which has never been explored.

Pattern formation, such as the Benard convection and the Taylor instability, is also extensively studied in physics and chemistry. In these cases, a homogeneous group of molecules can form orderly patterns. In another case, oxidative and reductive states repeat in an oscillatory way, known as the (Belousov-Zhabotinsky) B-Z reaction. These indicate that autonomous mechanisms do exist even in developing embryos, some of which were already studied extensively by Turing and Meinhard.

We have been exploring molecular mechanisms of pattern formation of vertebrate embryos, with central nervous system, limb bud and heart as model organs, and with several key transcription factors as our keen interest. Nonetheless, we have noticed that extensive analyses on the genetic programs are not sufficient for understanding thoroughly the dynamic pattern formation of developing embryos. Recently, we have identified that several proteins change their shapes and conformation in response to physical forces that

are generated by cells, hereby such strains trigger next biochemical responses. We are now studying this novel mechanism to understand functional roles of physical forces generated by cells and sensed by cells.

1) Molecular mechanisms of brain formation. Induction of cerebellum by an Iroquois homedomain transcription factor, Irx2. Fate determination of neural stem cells and their differentiation and migration.
IN OVO ELECTROPORATION

We have studied the mechanisms of regionalization of the optic tectum and cerebellum. It is now accepted that the fate of the brain vesicles is determined by combination of the transcription factors expressed, and that organizing molecule emanated from the local organizing center regulates expression of the transcription factors to determine the fate of the adjacent region. Midbrain hindbrain junction (isthmus) functions as a local organizing center that regulates the boundary shifts. We have shown that strong Fgf8b activates Ras-ERK signaling pathway to differentiate a cerebellum. If this signaling pathway is disrupted by dominant negative form of Ras, the optic tectum differentiates in place of cerebellum. But, this signaling pathway should be regulated precisely for mesencephalon/metencephalon boundary formation. If it overflows the boundary shifts anteriorly, and if the signaling is repressed the boundary shifts posteriorly. We have also shown that the region where Otx2, Enl and Pax2 are expressed differentiates as mesencephalon. Repressive interaction between Pax6 and Enl/Pax2, and between Otx2 and Gbx2 determines the di-mesencephalic and mes/metencephalic boundary, respectively. We are now interested in downstream signal transduction of Fgf8 in the midbrain and hindbrain. We also pay attention to the polarity formation in the tectum.

ibliography

Membrane traffic and brain function

The human body comprises a great many cells, each of which contains many subcellular units known as organelles (e.g., nucleus, the Golgi apparatus, and endoplasmic reticulum). Signals are exchanged frequently between cells and between organelles through "membrane traffic", in which membrane-wrapped substances are transported. However, much remains unknown about this process. Our laboratory focuses on the secretory phenomena (i.e., transport of secretory vesicles in neurons and endoplasmic reticulum), the autophagic pathway (i.e., a catabolic cellular process), and the melanin transport in melanocytes and tries to identify "key molecules" responsible for these membrane trafficking events. The aim of our research is to elucidate the molecular mechanism of membrane traffic by use of molecular biology, cell biology, biochemistry, and molecular imaging techniques.

We have previously shown that an abundant synaptic vesicle protein synaptotagmin I (Syt I) regulates synaptic vesicle exocytosis (i.e., neurotransmitter release) and endocytosis in neurons (Fig. 1). Syt I consists of a single N-terminal transmembrane domain and C-terminal tandem C2 calcium/phospholipid-binding domains (named C2A domain and C2B domain). These two C2 domains are functional domains of Syt I, because functionally blocking antibody against the C2A domain (or the C2B domain) inhibited synaptic vesicle fusion step (or synaptic vesicle recycling step) (Proc. Natl. Acad. Sci. USA (2000) 97, 14715-14719; Proc. Natl. Acad. Sci. USA (2004) 101, 17855-17860).

We have recently identified novel synaptotagmin-related molecules that contain tandem C2 domains at the C terminus (named Slp, synaptotagmin-like protein) and their related protein Slac2 (Slip homologue lacking C2 domains). Both Slp and Slac2 contain the conserved domain (named SHD, Slip homology domain) at their N terminus, and we found that the SHD functions as an effector domain for small GTPase Rab27A, which is specifically present on melanosomes in mammalian skin melanocytes (Structure (2008) 16, 1478-1490).

We further found that two Rab27A effectors, Slac2-a/melanophilin and Slp2-a, are abundantly expressed on melanosomes and sequentially regulate melanosome transport in melanocytes (Nature Cell Biol. (2004) 6, 1195-1203). Slac2-a simultaneously interacts with Rab27A on the melanosome and with an actin-based motor myosin Va, and the resultant tripartite protein complex (Rab27A-Slac2-a-myoisin Vα) mediates actin-based melanosome transport (Mol. Cell. Biol. (2003) 23, 5245-5255). After actin-dependent melanosome transport, the second Rab27A effector Slp2-a promotes the anchoring of melanosomes to the plasma membrane of melanocytes through direct interaction of the C2A domain with phosphatidylserine (PS) (Fig. 2).

In addition to melanosome transport, Rab27A has recently been shown to be involved in the transport of secretory vesicles in a wide variety of secretory cells, including neurons, endocrine cells, exocrine cells, and immune cells. For example, Rab27A regulates docking of hormone granules to the plasma membrane in neuroendocrine PC12 cells through interaction with rabphilin and Slp4-a/granuphilin-a (J. Biol. Chem. (2005) 280, 39253-39259; Mol. Biol. Cell (2006) 17, 2101-2112). Rab27A is also involved in the transport of recycled synaptic vesicles to the release site in the squid giant synapse (Proc. Natl. Acad. Sci. USA (2008) 105, 16003-16008).

Articles

Profile
Graduated from the Doctorial Course in the Graduate School of Science, Tohoku University. Worked as Research Assistant Professor at the University of California Los Angeles, researcher at the Electrotechnical Laboratory, Ministry of International Trade and Industry (present National Institute of Advanced Industrial Science and Technology (AIST)), Manager of the Biofunction Research Office, Chief Research Officer, professor at the University of Tsukuba Medical Branch, etc. and became professor at Tohoku University Graduate School of Life Science. Vice-President of Tohoku University (Life Sciences and Research ethics), Dean of Tohoku University Graduate School of Life Sciences. Councillor of Tohoku University. Received the Hiroshi Irisawa Memorial JJP Award from the Physiological Society of Japan (1998), etc.

Elucidation of functional architecture of the brain
Understanding of our mind has long been a big subject of human beings. Recent advances of analytical technique for the brain mechanisms may allow us to answer the question "what is mind" in the near future, through the knowledge of the brain now being accumulated. On the way to the final goal, it seems to be essential for us to elucidate the functional architecture of the brain for the better understanding of the brain. Based on this concept, we are studying the neuronal bases of higher brain function, such as the learning and memory, the motor control and the processing of various sensory inputs. In addition, the developments of new technique with virus vectors and of the brain machine interface are now going on.

Articles
Neural mechanisms underlying problem solving

General scope of our study is to understand how the brain works in goal-directed behavior. Recent progress in cognitive science and system neuroscience has significantly altered concepts of how the brain works to achieve functional operations required for cognition, action, memory and emotion. The time is ripe for studying the integrative aspects of brain function in detail using analytical methods. In our department, we have been investigating how individual areas in the cerebral cortex take part in generating purposeful motor behavior. Our main interest is to investigate cellular mechanisms to construct spatial and temporal patterns of activity required to plan to solve various cognitive problems.

As a result of recent studies, it has been established that multiple areas exist in the cerebral cortex that are crucially involved in controlling motor behavior. Our goal is to clarify how individual areas take part in determining what motor act to select and prepare, and how to generate spatial and temporal motor patterns from the viewpoint of embodied cognitive science. According to this view, any organism, such as a human or animal, or even a robot, is considered an embodied agent that interacts with its environment. To achieve our goal, we employ physiological techniques such as analyzing the activity of single cells in motor task behavior in primates, pharmacological techniques to apply chemical substances in situ, or histological techniques.

Recent findings from our laboratory: 1. We have found similarities and differences in neuronal activity in the premotor cortex and supplementary motor area compared to that in the primary motor cortex, in relation to a variety of motor acts. 2. We have defined the presupplementary motor cortex (pre-SMA) using physiological criteria, and found differences in the activity properties of cells in the pre-SMA and the SMA. 3. We found that the SMA and premotor cortex are involved differently in preparing and controlling sequential and continuous movements. 4. We found that neuronal activity in the SMA and pre-SMA are particularly useful for preparing multiple movements in a different order. We also found that the pre-SMA cells are particularly active in updating a new behavioral sequence. 5. We found that the cingulate motor area, mostly its rostral part, is crucially involved in selecting appropriate movements on the basis of reward evaluation. 6. We found that the rostral part of the cingulated motor area is involved in reward-based motor selection. 7. We have found physiological properties that characterize the supplementary eye field, in comparison with the frontal eye field. 8. We have found neuronal activity which reflect behavioral guidance by integrative function in the prefrontal cortex. 9. We found that cellular activity in the superior parietal lobule reflected the number of self-movement executions. 10. We have found neuronal activity, which reflect goal-setting, planning, in a problem-solving task in the prefrontal cortex. 11. We found that the prefrontal cortex in involved in planning multiple sequence of action based on action-category. 12. We found that discharge synchrony was transiently enhanced during the transition of behavioral goal representations of prefrontal neurons.

Articles

From neuron to network - Shedding light in the black box

The brain consists of many types of neurons which make a complex network. This idea was first proposed by Ramon y Cajal more than 100 years ago. However, it is still unresolved how the network activities are integrated into the brain’s function, the mind. Using genetic engineering techniques we have developed new optical recording methods which visualizes the network activities (Araki et al. 2005). We plan to manipulate activities of individual neurons by light as well as to record them optically, and to investigate the cellular and molecular mechanisms regulating the network dynamics.

In the neuronal network of the central nervous system (CNS) the synaptic transmission is regulated by the vesicle exocytosis and endocytosis. This vesicular dynamics is associated with the changes of intra-vesicular pH and can be visualized by the fluorescence of synaptopHluorin (SpH), a pH-sensitive GFP fused to the luminal aspect of VAMP-2. We have generated a transgenic mouse which express synaptopHluorin (SpH, green), a optical probe reporting vesicular dynamics, selectively in the mossy fiber terminals of the hippocampus. Neurons are also stained their nuclei (DAPI, blue). The repetitive stimulation of mossy fiber axons increase the SpH fluorescence in the individual presynaptic terminals (inset right, pseudocolor ratings).

During phototoxic and photophobic movements of unicellular green algae, light is perceived by archaebacterial rhodopsins which are localized in small regions of the plasma membrane, called eyespots. Two rhodopsins were isolated from Chlamydomonas reinhardtii, channelrhodopsin (ChR) 1 and 2. ChR2 has a peak light absorbance at 460 nm and forms a non-selective cation channel, the gating of which is triggered by the photoisomerization of the all-trans retinal to 13-cis configuration. We expressed ChR2 exogenously in the hippocampal neurons of a living mouse (Izuhaka et al. 2006). A brief illumination by a blue LED light depolarized these neurons over threshold to evoke action potential which is phase-locked with the light pulses.

With its high resolution in space and time, its large dynamic range and its convenience this photostimulation method would fulfill all the requirements for artificial stimulation of neurons, namely, generality, speed, localization and parallelism. Since ChR2 is relatively small and encoded in a single gene, it could be expressed in a specific subset of neurons under regulations of cell-type-specific promoters. It would, thus, open many potential applications, for both in vitro and in vivo studies of neuronal network, artificial manipulations of neuronal activity for the development of informational modules and possibly the development of non-invasive therapeutic instruments of bypassing interrupted neuronal connections.

Retinitis pigmentosa (RP) refers to a group of diseases in which a gene mutation results in death of rod photoreceptors followed by gradual death of cones. Approximately 1 in 4,000 people are affected by this disease. Symptoms include night blindness, loss of the peripheral visual field and of central vision. Although photoreceptor cells are almost degenerated in the eyes of RP patients, other retinal neurons including retinal ganglion cells (RGC) are preserved. These remaining neurons are possibly made photosensitive by genetically engineering to express ChR2. When ChR2 was expressed in the retina of the aged Royal College of Surgeons (RCS) rat, one of classic model animals of genetically inherited RP, some of visual responses were shown to be restored (Tomita et al. 2007). It is thus suggested that the ChR2 transduction method would provide a new strategy to treat some RP symptoms.
Profile

Prof. Ishiguro has received PhD degree from Nagoya University in 1991. From 1991 to 1997, he was with Nagoya University as an assistant professor. From May 1997 to 2006, he was an associate professor of the same university. In 1997, he was a visiting professor at artificial intelligence laboratory (Prof. Rolf Pfeifer) in University of Zurich, Switzerland. Since April 2006, he has been a professor of the Graduate School of Engineering, Tohoku University. His research interests are in embodied artificial intelligence, autonomous decentralized control, nonlinear science, robotics, and biophysics. He received 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2004) Best Paper Award.

Intelligence emerged through the interaction between brain, body and environment
- Synthetic approach with building robotic agents -

The behavior of an embodied agent emerges through the interplay between its brain (i.e. control system), body (i.e. mechanical system), and the environment. Considering the fact that the brain and body, which are normally the targets to be designed for robotic agents, are positioned at the source of this interaction, they should be treated with an equal emphasis. However, despite their tight interdependency, these two systems have been investigated in isolation so far. In light of these facts, we have been investigating the brain-body interaction. More specifically, our interests are summarized as twofold: 1) how the brain and its body should be coupled so as to emerge useful functionalities such as adaptivity; and 2) to what extent the brain should be responsible for the generation of behavior? In order to investigate the above, we employ a synthetic approach with the use of robots, i.e. understanding by building robotic agents. The research topics currently underway are as follows:

- A modular robot that exhibit amoeboid locomotion
- Self-assembly inspired from the biological developmental process
- Self-repair
- Adaptive control of bipedal locomotion
- A biped robot that enables stable and adaptive running
- Seamless transition between walking and running

Articles

Profile

Assoc. Prof. Ken-Ichiro Tsutsui graduated, and received his Ph.D. in Experimental Psychology, from the University of Tokyo. Since then he has been studying the neural mechanisms of higher cognitive functions, first as a JSPS Fellow in the Department of Physiology, Nihon University School of Medicine, next as a Research Associate in the Department of Anatomy, University of Cambridge, and presently as an Associate Professor in the Tohoku University Graduate School of Life Sciences. He was awarded the Japan Neuroscience Society Young Investigator Award in 2003 for his series of studies on the neural mechanisms of three-dimensional vision. He uses theories and concepts in behavioral and cognitive psychology with electrophysiological, neurochemical, and neuroimaging techniques, in order to investigate the neural mechanisms of higher cognitive functions. His current research interests cover parietal-prefrontal interactions for 3D vision and mental image manipulation, prefrontal-inferotemporal interactions for categorization and inference, and prefrontal-limbic-striatal interactions for reward processing and decision-making.

Neural basis of higher cognitive function

We are interested in the neural background of various cognitive functions. We combine behavioral, electrophysiological, and neuroimaging techniques in order to investigate the relations between behavior and neural activity at the level of single neurons and individual brain regions. Our research interest covers wide range of cognitive processes, such as:

1. Three-dimensional vision (parietal association cortex)
2. Categorical reasoning, decision making (prefrontal cortex)
3. Reward representation, incentive learning, neuroeconomics (cortex - basal ganglia - brainstem interactions)

A certain cognitive function cannot be attributed to a specific brain structure. Rather than that, harmonic interactions of various brain structures are necessary for any cognitive function. In order to thoroughly understand the neural background of a cognitive function, it is very important to investigate this dynamic process taking place in the brain. The basic strategy of our research is to first develop a suitable behavioral task to examine the target cognitive function, and then to perform electrophysiological recordings in various brain regions using primates and/or rodents as subjects. By comparing the properties of the neuronal activity recorded in different brain regions, we can build up a model of neural circuit connecting within and between multiple brain regions underlying the cognitive function. The results obtained by the electrophysiological recordings can be confirmed in humans at the level of brain regions by neuroimaging experiments using the same behavioral task.

Articles

Behavioral Neurology and Cognitive Neuroscience

Department of Behavioral Neurology and Cognitive Neuroscience was founded in 1994 as a part of Division of Disability Science, Tohoku University Graduate School of Medicine. We also have a responsibility for the clinic of the Tohoku University Hospital. Our section have graduate programs for medical students and postgraduate programs for graduate students from various areas including medicine, neuroscience, psychology, rehabilitation sciences, and education, and provides unique opportunities to study the relationship and its disorder in leading journals.

1. Clinical neuropsychology
Our clinical studies covers wide range of neuropsychological and behavioral neurological themes including emotion, attention, memory, language, praxis, visuospatial function, frontal lobe functions, and dementia. Aims of our clinical studies are; to clarify the level of dysfunction that each patient shows using detailed neurological and neuropsychological examinations tailored for the individual, to examine localization and severity of brain damage by neuroimaging techniques such as MRI, PET and SPECT, and to understand neuronal mechanisms underlying each higher cerebral function. Furthermore we devise methods for treatment for each patient using those findings. We have published important findings concerning brain-mind relation and its disorder in leading journals.

2. Neuroimaging studies
In addition to clinical studies mentioned above, functional neuroimaging such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) enable us to measure brain activity associated with various cognitive functions in humans. The joint complementary use of neuroimaging and neuropsychology offers a fundamental advantage over either technique in isolation. Research interests were focused so far on memory processes and executive functions, but are now expanding into other basic cognitive domains, activation study in brain damaged, and pharmacological MRI.

3. Research on neurobehavioral aspects of neurological disorders
Studies focusing on cognitive and behavioral problems in patients with various neurological diseases and brain injury elucidated neuronal basis and solutions of the problems. Structural and functional brain imaging figured out the neural basis of the deficits of memory, language, and executive functions and behavioral symptoms in dementing illnesses (e.g., Alzheimer’s disease, frontotemporal lobe degeneration, idiopathic normal pressure hydrocephalus), neurological diseases (e.g., Parkinson’s disease), and neurodevelopmental disorders (e.g., Prader-Willi syndrome).

4. Neuro-nosometrics and clinical trial for neurological and cognitive disorders
It is increasingly important to measure cognitive and behavioral dysfunctions after emerging the concepts of evidence-based medicine and translational research. Study on measures of cognitive and behavioral dysfunctions as well as sensori-motor deficits caused by brain damage (neuro-nosometrics) is an important research field, which we are centrally involved in. Neuro-nosometrics covers not only evaluation of neuronal dysfunctions but also detection of possible effects of an intervention. We are now engaged in several nation-wide cooperative clinical trials for stroke and Alzheimer’s disease as core investigators for study design and analysis of clinical outcome. Furthermore, we are organizing a new physician-leading clinical trial of a compound for patients with aphasia.

Articles
1) Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoso S, Miyamoto S, Sasaki M, Inoue T; The MELT Japan Study Group. Randomized Trial of Intravenous Infusion of Urokinase Within 6 Hours of Middle Cerebral Artery Stroke. The Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. Stroke. 2007 Aug 16; [Epub ahead of print].

Core Research Interest
1. Clinical neuropsychology
Our clinical studies covers wide range of neuropsychological and behavioral neurological themes including emotion, attention, memory, language, praxis, visuospatial function, frontal lobe functions, and dementia. Aims of our clinical studies are; to clarify the level of dysfunction that each patient shows using detailed neurological and neuropsychological examinations tailored for the individual, to examine localization and severity of brain damage by neuroimaging techniques such as MRI, PET and SPECT, and to understand neuronal mechanisms underlying each higher cerebral function. Furthermore we devise methods for treatment for each patient using those findings. We have published important findings concerning brain-mind relation and its disorder in leading journals.

2. Neuroimaging studies
In addition to clinical studies mentioned above, functional neuroimaging such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) enable us to measure brain activity associated with various cognitive functions in humans. The joint complementary use of neuroimaging and neuropsychology offers a fundamental advantage over either technique in isolation. Research interests were focused so far on memory processes and executive functions, but are now expanding into other basic cognitive domains, activation study in brain damaged, and pharmacological MRI.

3. Research on neurobehavioral aspects of neurological disorders
Studies focusing on cognitive and behavioral problems in patients with various neurological diseases and brain injury elucidated neuronal basis and solutions of the problems. Structural and functional brain imaging figured out the neural basis of the deficits of memory, language, and executive functions and behavioral symptoms in dementing illnesses (e.g., Alzheimer’s disease, frontotemporal lobe degeneration, idiopathic normal pressure hydrocephalus), neurological diseases (e.g., Parkinson’s disease), and neurodevelopmental disorders (e.g., Prader-Willi syndrome).

4. Neuro-nosometrics and clinical trial for neurological and cognitive disorders
It is increasingly important to measure cognitive and behavioral dysfunctions after emerging the concepts of evidence-based medicine and translational research. Study on measures of cognitive and behavioral dysfunctions as well as sensori-motor deficits caused by brain damage (neuro-nosometrics) is an important research field, which we are centrally involved in. Neuro-nosometrics covers not only evaluation of neuronal dysfunctions but also detection of possible effects of an intervention. We are now engaged in several nation-wide cooperative clinical trials for stroke and Alzheimer’s disease as core investigators for study design and analysis of clinical outcome. Furthermore, we are organizing a new physician-leading clinical trial of a compound for patients with aphasia.
Molecular Neurobiology of Mental Disorders

It is very useful to develop animal models of neuropsychiatric disorder, which are able to investigate the etiology, pathophysiology, responsibility to medication, and various symptoms of neuropsychiatric disorder, although there are no sufficient animal models to reflect overall symptoms of psychiatric patients. Recently molecular genetic method, which targets specific genes of mice and delete them, has been established. We introduce here usefulness and recent acknowledgment of these knockout mice as animal models of neuropsychiatric disorder. Monoamine neurotransmission is affected by antipsychotics or antidepressants, so it is said that they play a crucial role in pathophysiology of neuropsychiatric disorders. Dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter are located on plasma membrane of pre-synaptic region. They rapidly reuptake extracellular monoamine and regulate the neurotransmission.

Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by genetic factors. Recent studies using animal models of addiction have revealed that the susceptibility to develop addiction is influenced by genetic factors. Recent studies using animal models of addiction have revealed that the susceptibility to develop addiction is influenced by genetic factors. Recent studies using animal models of addiction have revealed that the susceptibility to develop addiction is influenced by genetic factors. Recent studies using animal models of addiction have revealed that the susceptibility to develop addiction is influenced by genetic factors.
Research on stress and brain—Gut interactions

The great social benefit is expected if we can clarify the pathophysiology of stress-related disorders and coping program against it with brain science. The mission of the Department of Behavioral Medicine is to promote basic and clinical research on the relationships among health, illness, and behavior. Our research targets at any diseases that are influenced by psychosocial stress but mainly focuses on physiology of stress and pathophysiology of stress-related disorders.

Mind is results of brain function and development of the brain needs the peripheral organs both in the individual aspects and in the evolutionary aspects. All environmental information is input to the peripheral organs at first, conducted to the brain as the sensory signal, and processed in the brain. The perception and emotion arise during this process. Emotion consists of changes in function of the peripheral organs via autonomic nervous system and endocrine as well as subjective feeling. Feedback or feedforward processing among the specific brain structures and between the brain and the periphery forms further emotion. This response is considered to be partially determined with genes and epigenetic factors peripheri forms further emotion. This response is considered to be partially determined with genes and epigenetic factors. The development process, influence of pathogen, and so on. Individuals cope with environmental changes by behavior. The developmental process, influence of pathogen, and so on. The development process, influence of pathogen, and so on.

What kinds of substance regulate the brain-gut interactions is also one of the main interests of our group. We performed gene analysis and found that polymorphism of the serotonin transporter gene at least in part regulated negative emotion. Moreover, differential brain response was detected depending on the polymorphism of the serotonin transporter gene. Administration of corticotropin-releasing hormone (CRH) to IBS patients induces exaggerated secretion of adrenocorticotropic hormone and exaggerated motility of the colon. Administration of CRH antagonist improves exaggerated motility of the colon, visceral perception, anxiety, reduced alpha-power percentage in electroencephalogram, and PET imaging in IBS patients. Increased input of the signal to the colon made rats have exaggerated colonic motility, increase noradrenaline release in the hippocampus, and be anxious. In this animal model of IBS, CRH antagonist was effective to alleviate the pathophysiology.

We are also exploring psychological trauma, maternal deprivation, alexithymia, mucosal sensitization, and histamine H1 receptor distribution on the pathophysiology of the stress-related disorders like eating disorders. Moreover, we are developing applicable program for clinical practice; psychotherapy including cognitive behavioral therapy, hypnotherapy, etc., based on the evidence. We plan to further clarify the pathophysiology of stress-related disorders, finding way of regulation of key molecule of stress response, and developing coping program against it with brain science.

Articles

Development of motor neuron restorative therapy in amyotrophic lateral sclerosis using hepatocyte growth factor

Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disorder characterized by the death of upper and lower motor neurons. Mutations in Cu/Zn superoxide dismutase (SOD1) have been linked to some familial cases of ALS1). In familial ALS kinders with mutations in the SOD1 gene, the age of onset of weakness varies greatly but the duration of illness appears to be characteristic to each mutation. For example, in patients with the L84V mutation, the average life expectancy is less than 1.5 year after the onset of symptoms, whereas patients harboring the H46R mutation have an average life expectancy of 18 years after the disease onset. In view of the evidence supporting the idea that familial ALS variants of SOD1 are linked to some familial cases of ALS1). In familial ALS, mutations (G93A and H46R) develop striking motor neuron disease and therapeutic potential, we administered hrHGF to transgenic (Tg) rats protects against neurodegeneration. Some experimental manipulations are difficult in Tg mice due to severe limitations. However, this Tg rat model allows routine implantation of infusion pumps for intrathecal drug delivery. This route of administration bypasses the blood–brain barrier, allowing rapid access to potential binding sites for the test compound in the spinal cord.

Hepatocyte growth factor (HGF) is one of the most potent survival-promoting factors for motor neurons. To examine its both protective effect on motor neurons and therapeutic potential, we administered human recombinant HGF (hrHGF) by intrathecal delivery to G93A transgenic (Tg) rats at onset of paralysis for 4 weeks. Intrathecal administration of hrHGF attenuates motor neuron degeneration and prolonged the duration of the disease by 63 % (Fig.2, 3) 4).

Our results indicated the therapeutic efficacy of continuous intrathecal administration of hrHGF in Tg rats. The results should prompt further clinical trials in ALS using continuous intrathecal administration of hrHGF. We are making efforts in evaluating several adverse effects of the hrHGF treatment on marmosets using marmosets on the way to clinical trials of HGF for ALS patients.

Positional cloning of the gene for Miyoshi myopathy and limb-girdle muscular dystrophy

Miyoshi myopathy (MM) is an autosomal recessive distal muscular dystrophy characterized by mid-to-late childhood or early adulthood onset, with preferential involvement of the calf muscles and highly elevated levels of the enzyme serum creatine kinase (CK). In 1998, we identified that the dysferlin gene is mutated in MM2). It has 55 exons and 6,243 bp nucleotides in an open reading frame (ORF) of 2,080 amino acids. This gene is also mutated in families with limb girdle muscular dystrophy 2B3). We reported the genotype-phenotype correlations in Japanese patients with MM4).

Our results indicated the therapeutic efficacy of continuous intrathecal administration of hrHGF in Tg rats. The results should prompt further clinical trials in ALS using continuous intrathecal administration of hrHGF. We are making efforts in evaluating several adverse effects of the hrHGF treatment on marmosets using marmosets on the way to clinical trials of HGF for ALS patients.

It has 55 exons and 6,243 bp nucleotides in an open reading frame (ORF) of 2,080 amino acids. This gene is also mutated in families with limb girdle muscular dystrophy 2B3). We reported the genotype-phenotype correlations in Japanese patients with MM4).

Articles

Hasekura Fellowship
Support for short- and mid-term research visits to/from abroad

Purpose

One of the major aims of this GCOE program is to help graduate students and junior scientists develop outstanding scientific communication skills within and outside of the research community, as well as unparalled research skills in their fields of expertise. Collaborative experiences with colleagues having different cultural and educational backgrounds will need to become world-class scientists. Attendance at international meetings will provide them with opportunities to realize the strengths and weaknesses of their own research by exposing them to the global standards in their fields. Japanese society and the Japanese scientific community remain “exotic” from the perspective of Western standards. For example, we focus on team efforts more and tend to avoid criticizing others explicitly. This and other traditions survive in part because of the uniqueness of the Japanese language. Although this protection fostered the development of a uniquely Japanese culture, it also hampered Japan’s transition to an “open” society, in which unrestricted discussion among members underlies any decision-making.

Aiming to open the Japanese scientific community, we implemented an educational program in which graduate students and junior scientists are encouraged to seek new ways to reconcile Japanese traditions to global standards in a variety of scientific achievements. Toward this end, we established the Hasekura fellowship program to support short- and mid-term visits to foreign countries by GCOE graduate students and junior scientists for collaborative research and attendance at scientific meetings. The Hasekura fellowship also supports visits by established researchers as well as graduate students and junior researchers from abroad to our GCOE laboratories for the same purposes.

Hasekura Ttsnenaga -SAMURAI who went to Rome in 16th Century

This fellowship program is named after Ttsnenaga Hasekura (1571-1622), a samurai in the early Edo era (1603-1867). Tatsuyas Tokugawa (1543-1616), the founding Shogun of the Edo era, rescued the crew of a Spanish ship stranded near the Pacific coast of Japan, and sent them back to Spain with a newly constructed ship. This stimulated the exchange of missions between the two countries. In 1613, Masamune Date (1567-1636), the Daimio samurai serving as the local governor of the Tohoku area (its capital city was Sendai), sent a historic mission, called the Keicho Embassy, to Spain. It was Ttsnenaga Hasekura who headed the Keicho Embassy, together with the famous Spanish explorer Sebastian Vizcaino (1548-1624). Accompanied by more than 180 sailors they set sail aboard the galloon San Juan Bautista, built in Japan, and spent more than two years at sea before arriving in Rome, where Ttsnenaga Hasekura met the Pope. Many of the Japanese sailors involved in this trip eventually became naturalized citizens of Spain, and in the small town of Corra del Rio, several hundred people having the last name Japón or Xapón, indicative of being descendants of the Japanese sailors, are now living. Before the Keicho Embassy, only a limited number of missions to the Western world had been sent from Japan. Soon after the Keicho Embassy, the second Shogun, Hidenaga Tokugawa (1579-1632), closed the country, beginning an isolation policy that lasted for 250 years. The Keicho Embassy headed by Ttsnenaga Hasekura represents a surprising endeavor to change Japanese society through adventurous explorations of the world.

Fellowship achievements

Researchers who wish to visit laboratories in other countries, attend international meetings, or invite leading scientists from abroad to our GCOE laboratories, must submit an application for a Hasekura fellowship to the GCOE office. The submitted applications are evaluated by GCOE’s international affairs committee. In the past two fiscal years, Hasekura fellowships have enabled 31 graduate students, 6 postdoctoral fellows, and 7 assistant professors of the GCOE laboratories to participate in international collaborations and/or meetings. Moreover, 1 established scientist and 8 graduate students and junior scientists from around the world visited our laboratories under this program. The total budget for the Hasekura fellowships in that two-year period was over 20 million yen. We hope that more and more young researchers will benefit from the Hasekura fellowships for the development of their careers as professional scientists.