第2回 疾患エピゲノムコアセンターセミナー

菅井 学 教授

福井大学 医学部 生命情報医科学講座 分子遺伝学領域

「ミトコンドリア機能による活性化B細胞運命決定機構」

細胞分化は一般的にinstructiveな(方向付け)シグナル(サイトカイン等方 向性を決めるもの)と細胞内の確率的な現象によって決定されることが知ら れています。活性化B細胞は、クラススイッチ組換え、形質細胞分化、細胞死 などに方向付けられますが、これを決定する分子機構の詳細は不明でした。 Duffyらは、活性化B細胞の分化は、細胞自身の確率的な現象で決定されてい ることを示しました(Science 335, 338, 2012)。私たちはこの確率的な変化 の実態を知りたいと考え、これを検索しました。その結果、ミトコンドリア 機能の確率的な変化が、ヘム合成能の変化をもたらし、活性化B細胞の分化の 方向性を決定していることを見いだしました。その一方で、B細胞受容体から のシグナルが形質細胞に分化させるinstructiveな(方向付け)シグナルであ ることも示されています(Ochiaiら Immunity 38, 918, 2013)。私たちは、 B細胞受容体刺激の下流で機能するPI3KやAktを抑制すると、ミトコンドリア 機能が活性化されることを見いだしました。これによって、クラススイッチ 組換えが誘導され、形質細胞分化が抑制されます。この時、ミトコンドリア 機能の亢進に伴って、ヘム合成は抑制されます。これらのことから、形質細 胞分化のinstructiveなシグナルは、確率的な細胞内シグナルと同様、ヘム合 成能というシグナルに変換され、細胞内で統一的に解釈されている可能性が 示唆されました。本セミナーでは、細胞分化におけるヘムの重要性について 議論したいと考えています。

> 2016年5月20日(金) 17時~18時 6号館 1階 カンファレンス室1

本セミナーは医学履修課程特別セミナー等を兼ねています。 大学院博士課程コース受講生は履修簿を持参し、受講後にサインを受けて下さい。 学部生の皆さんの聴講も大歓迎です。

世話人 五十嵐 和彦(生物化学分野) 問い合わせ先:内線7597