医科学専攻 保健学専攻

  • Doctoral Courses 
    博士課程

Medical Physics医用物理学

  • X線、X-ray
  • 蛍光、fluorescence
  • 放射光、synchrotron radiation
  • ナノ粒子、nanoparticle
  • イメージング、imaging
  • 診断、diagnosis
  • 放射線治療、radiation therap
  • 創薬、drug discovery

STAFF

Professor

  • Gonda, KohsukeProfessor. 権田 幸祐 教授

Other Faculty / Staff

  • Kitamura, Narufumi
    Assoc.Prof. 北村 成史 准教授

CONTACT

TEL:+81-22-717-7579
E-MAIL:medphys*med.tohoku.ac.jp
(「*」を「@」に変換してください)

OUTLINE

Imaging technology is very important for an effective early diagnosis and treatment of diseases. We have mainly been using model mice to elucidate the mechanisms of cancer, thrombosis, diabetes, and muscle atrophy and apply these mechanism concepts in the development of diagnostic and therapeutic techniques for diseases with high accuracy and sensitivity. We have been developing technologies for X-ray computer technology (CT) and fluorescence imaging using nanomedicine (nanomedicine: a research field that combines nanotechnology with medicine/medical science). X-ray absorption is proportional to the amount of the contrast agent, and fluorescence intensity is proportional to the intensity of the excitation light. Therefore, X-ray CT and fluorescence imaging are highly quantitative visualization methods. To date, imaging data has been expanded to elucidate vascular remodeling mechanisms related to the progression of pathological conditions and to the basic techniques of diagnostic imaging and treatment of diseases, and interesting results have been obtained. Furthermore, in recent years, we have also accepted the challenge of high-resolution imaging of pathological tissues using synchrotron radiation (X-rays). Members from various academic fields of science and technology have been meeting in the laboratory to conduct the aforementioned studies. Whereas valuable discussions and teamwork has been fusing everyone’s ideas, knowledge, and techniques, we have been enjoying and earnestly facing research issues daily.

疾病の早期診断や治療を効果的に行うには、イメージング技術はとても重要です。 我々は主にモデルマウスを用いてがん、血栓症、糖尿病、筋委縮のメカニズム解明を行い、この概念を疾病の診断や治療の技術開発へ応用することを目的として、高精度かつ高感受性のX線CTや蛍光イメージングの技術開発を、ナノメディシンを用いて行ってきました (ナノメディシン:ナノテクノロジーと医学・医療を融合した研究分野)。 X線の吸収は造影剤の量に比例し、蛍光強度は励起光の強度に比例します。したがってX線CTや蛍光イメージングは定量性の高い可視化法になります。これまでに、我々のイメージングデータは、疾病の進行に関連した脈管リモデリング機構の解明や、病態の画像診断法および治療法の基盤技術へ発展し、興味深い結果となっています。さらに近年は放射光(X線)を使った病態組織の高分解能イメージングにも挑戦しています。 以上の研究を遂行するために、医用物理学分野では、理工医の様々な学問分野を背景とするメンバーが結集し、皆のアイデア・知識・技術を融合した議論とチームワークを大切にしながら、楽しくかつ真摯に日々研究課題に向き合っています。

  • Tumor vessels visualized by X-ray CT (A) and fluorescence (B)
    X線CT(A)と蛍光(B)で可視化した腫瘍血管

  • X-ray CT Imaging (A) and analysis (B)
    X線CT(A)を用いた画像取得と解析(B)の様子

ARTICLE

Une N et al. The anti-angiogenic agent lenvatinib induces tumor vessel normalization and enhances radiosensitivity in hepatocellular tumors. Med. Oncol. 38: 60, 2021
URL:https://link.springer.com/article/10.1007/s12032-021-01503-z

Inose T et al. Development of X-ray contrast agents using single nanometer-sized gold nanoparticles and lactoferrin complex and their application in vascular imaging. Colloids Surf. B 203: 111732, 2021
URL:https://doi.org/10.1016/j.colsurfb.2021.111732

Gonda K et al. Heterogeneous drug efficacy of an antibody-drug conjugate visualized using simultaneous imaging of its delivery and intracellular damage in living tumor tissues. Transl. Oncol. 13: 100764, 2020
URL:https://doi.org/10.1016/j.tranon.2020.100764

Gonda K et al. Quantitative diagnostic imaging of cancer tissues by using phosphor-integrated dots with ultra-high brightness. Sci. Rep. 7: 7509, 2017
URL:https://www.nature.com/articles/s41598-017-06534-z

Nakagawa T et al. X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specific antibody via polyethylene glycol chains on their surface. Sci. Technol. Adv. Mater. 17: 387-397, 2016
URL:https://www.tandfonline.com/doi/full/10.1080/14686996.2016.1194167

一覧へ戻る
ページトップへ戻る